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Abstract: We examine the uncertainty of perturbative QCD factorization for hadron

structure functions in deep inelastic scattering at a large value of the Bjorken variable xB .

We analyze the target mass correction to the structure functions by using the collinear

factorization approach in the momentum space. We express the long distance physics of

structure functions and the leading target mass corrections in terms of parton distribution

functions with the standard operator definition. We compare our result with existing work

on the target mass correction. We also discuss the impact of a final-state jet function on

the extraction of parton distributions at large fractional momentum x.
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1. Introduction

Much of the predictive power of perturbative Quantum Chromo Dynamics (pQCD) is

contained in factorization theorems and in the universality of non-perturbative hadronic

matrix elements [1]. Predictions follow when processes with different hard scatterings but

the same matrix elements are compared. In the case of leading power contributions, the

universal matrix elements are interpreted as parton (quark or gluon) distribution functions

(PDFs). With the PDFs extracted from a global QCD analysis [2 – 4], pQCD has been

very successful in interpreting and predicting high-energy scattering processes.

However, significant uncertainties still exist in the PDFs due to the accuracy of ex-

perimental data and to unknown higher order corrections to perturbative calculations.

In particular, the PDFs are least constrained in the region where the parton momentum

fraction x > 0.5 for valence quark distributions and x > 0.3 for gluon and sea quark

distributions [2, 3]. On the other hand, precise PDFs are needed for many reasons [5].

For example, the discovery potential of the Large Hadron Collider (LHC) on new physics

as excess in particle/jet spectrum at large momentum requires accurate PDFs at large x

and large factorization scale µ. Since PDFs at a large µ are obtained by solving DGLAP
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evolution equations with input PDFs at a lower factorization scale, and the evolution feeds

the large-x partons at a lower scale to those at a higher scale with smaller momentum

fraction x, the precision of PDFs at large µ depends on the accuracy of PDFs at large x

and low factorization scale. Furthermore, reliable information on the ratio of d(x)/u(x) as

x→ 1 could provide very important insights into the non perturbative structure of the nu-

cleon [6, 8, 9, 7] and references therein. However, because of the PDFs steeply falling shape

as a function of x as x→1, and because of the convolution of two PDFs, most observables

in hadronic collisions do not provide tight enough constraints to the PDFs at large x. On

the other hand, inclusive lepton-hadron deep inelastic scattering (DIS) at large Bjorken

xB is a more direct and clean probe of large-x parton distributions. Recently, experiments

at the Jefferson Laboratory have produced DIS data at large xB with high precision, but

at relatively low virtuality Q2 of the exchanged virtual photon in lepton-hadron colli-

sions [10 – 12]. Experiments measure DIS cross sections, or, equivalently, the DIS structure

functions, not PDFs. In order to extract PDFs at large x from these and other data at

low Q2, it is necessary to have theoretical control over power corrections, such as the dy-

namical power corrections (or high twist effects), ∝ Λ2
QCD/Q

2 with the non-perturbative

scale ΛQCD ∼ 1/fm [13, 14], the target mass corrections (TMC), ∝ x2
Bm

2
N/Q

2 with nucleon

mass mN [15], and possibly, final-state jet mass corrections (JMC), ∝ m2
j/Q

2 [16]. These

corrections become larger and larger as data approach the kinematic limit xB = 1. In this

paper, we examine the uncertainties in extracting PDFs at low Q2 and large xB caused by

the target mass and jet mass corrections.

At the leading power, the perturbative QCD factorization treatment of DIS cross

sections neglects all 1/Q2-type power corrections. However, TMC play a somewhat special

role. Since the mass of the target is a non-perturbative quantity, the partonic dynamics

of short-distance factors in the QCD factorization formalism should not depend on it.

Therefore, for any hadronic cross section that can be factorized in perturbative QCD,

the effect of TMC should be implicitly included in the definition of the non-perturbative

hadron matrix elements, and explicitly accounted for in the kinematic variables of the

observables. In this sense, TMC are mostly of kinematic origin. At large xB and low Q2,

the x2
Bm

2
N/Q

2-type TMC can be an important part of the measured cross sections, and

should be identified and removed before we extract the leading power PDFs at large x.

Following the pioneering work by Georgi and Politzer (GP) in as early as 1976 [17],

many papers have been written on TMC, in particular, for lepton-hadron DIS. A recent

review by Schienbein et al. provides a nice summary of this effort [15]. Most existing

calculations use the technique of operator product expansion (OPE) to resum m2
N/Q

2

corrections to the structure function moments. A strong debate has been centered on the

inversion of the moment formula [18 – 22]. If we keep the target mass in the DIS kinematics,

the Bjorken scaling variable xB for the DIS cross sections or structure functions needs to

be replaced by the Nachtmann variable [23], ξ = 2xB/(1 +
√

1 + 4x2
Bm

2
N/Q

2) → xB as

m2
N/Q

2 → 0. If the target mass cannot be neglected at low Q2, the Nachtmann variable

ξ is less than 1 even at xB = 1. Only if one ignores the xB = 1 kinematic threshold, and

allows ξ to run up to 1, does the inverse Mellin transformation of the structure function
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moments give back the structure functions in xB space [20, 21]. As a consequence, the

inverted structure functions are finite in the unphysical xB > 1 region. The unphysical

region has been argued to disappear with the inclusion of power-suppressed higher-twist

terms in the computation [18]. Alternatively, many prescriptions have been suggested to fix

the moments inversion problem, or to phenomenologically eliminate the unphysical region,

see [20 – 22]. None of these prescriptions is entirely satisfactory or unique.

To completely avoid the ambiguities in connection with the structure functions mo-

ments and their inversion, it is natural to investigate the TMC in the momentum space

without using the OPE and taking the moments. This is most easily done in the context

of the field theoretic pQCD parton model, as pioneered by Ellis, Furmanski, and Petronzio

in ref. [13]. Recently, Kretzer and Reno applied and compared both approaches in the

case of neutrino initiated DIS experiments [24, 25]. In this paper, we revisit the TMC

in DIS in terms of the perturbative QCD collinear factorization approach in momentum

space and express the long distance physics of structure functions and the leading target

mass correction in terms of PDFs that share the same partonic operators with the PDFs

of zero hadron mass. In our approach, the momentum space structure functions have no

unphysical region. Moreover, our approach can be generalized to semi-inclusive DIS and

hadronic collisions, where the OPE is not applicable.

In the collinear factorization approach at the leading power in 1/Q2, the short-distance

factors are perturbatively calculated with massless final-state light partons. As recently

pointed by Collins, Rogers and Stasto in ref. [16], the outgoing parton lines should acquire

jet subgraphs/functions to have correct kinematics. The invariant mass in the jet subgraph

leads to the before mentioned m2
j/Q

2-type JMC, which are particularly sensitive to the

large-xB kinematics and the extraction of large-x PDFs. In this paper, we discuss the role

of the jet functions in modifying the DIS kinematics in the collinear factorization approach.

We neglect the soft interactions between the beam jet and the final-state jet functions, and

present a collinear factorization formalism for calculating DIS structure functions with a

non trivial jet function. Based on a toy-model estimate, we argue that the JMC has a

significant effect on the extraction of PDFs when x & 0.6. The connection of the jet

function with lattice QCD computations of the non-perturbative quark propagator is also

discussed.

The rest of our paper is organized as follows. In section 2, we drive the TMC in terms

of QCD collinear factorization in momentum space. We explicitly demonstrate that our

result has no unphysical region for the DIS structure functions. We compare our result with

TMC predicted by other approaches. In section 3, we discuss the JMC. Finally, we present

our summary and thoughts on future extensions in section 4. In the main text we limit

the discussion to light partons and the transverse and longitudinal structure functions. In

the appendices, we generalize our formulae.
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2. Target mass corrections

The DIS cross section is determined by the hadronic tensor

W µν(p, q) =
1

8π

∫
d4z e−iq·z〈p|J†µ(z)Jν(0)|p〉 , (2.1)

where p is the nucleon 4-momentum, q is the virtual boson 4-momentum, Jµ is the elec-

tromagnetic or electroweak current, and |p〉 is the hadron wave function. In the impulse

approximation the lepton-nucleon interaction proceeds through the scattering of the virtual

boson with a parton (quark or gluon) belonging to the nucleon, and having 4-momentum

k, see figure 1. With these 4-momenta we can build the following useful invariants:

xB =
−q2
2p · q , Q2 = −q2, m2

N = p2, xf =
−q2
2k · q . (2.2)

The first 3 invariants, namely, the Bjorken variable xB , the rest mass mN of the nucleon

and the vector boson virtuality Q2, are experimentally measurable. We call them “external

invariants”. The fourth invariant, xf , is the Bjorken variable for a partonic target and is

not experimentally measurable, so we call it “internal”.

We work in a class of frames, called collinear frames, defined such that p and q do not

have transverse momentum. Then we can decompose p, q and k as follows.

pµ = p+nµ +
m2

N

2p+
A

nµ

qµ = −ξp+nµ +
Q2

2ξp+
nµ

kµ = xp+nµ +
k2 + k2

T

2xp+
nµ + ~k µ

⊥ .

(2.3)

The light-cone vectors nµ and nµ satisfy

n2 = n2 = 0 n · n = 1 , (2.4)

and define the light-cone plus and minus directions, respectively. The plus- and minus-

components of a 4-vector a are defined by

a+ = a · n a− = a · n. (2.5)

If we choose n = (1/
√

2,~0⊥, 1/
√

2) and n = (1/
√

2,~0⊥,−1/
√

2), we obtain a± = (a0 ±
a3)/

√
2. The transverse parton momentum kT satisfies kT ·n = kT ·n = 0. The nucleon plus-

momentum, p+, can be interpreted as a parameter for boosts along the z-axis, connecting

the target rest frame to the hadron infinite-momentum frame. The parton fractional light-

cone momentum with respect to the nucleon is defined as

x = k+/p+ , (2.6)
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p

=
˜
k

µ ν

⊗
p

µ ν
q

k
k

q

Figure 1: Collinear factorization of the hadronic tensor in the impulse approximation. The top

blob represents the interaction of a virtual boson with a parton computed in pQCD at any order

in αs.

and is an internal variable. The virtual boson fractional momentum

ξ = −q
+

p+
=

2xB

1 +
√

1 + 4x2
Bm

2
N/Q

2
(2.7)

is an external variable, and coincides with the Nachtmann variable [23]. Note that in the

Bjorken limit (Q2→∞ at fixed xB) ξ→xB and we recover the standard kinematics in the

massless target approximation. In this paper, we will consider light quarks u, d, s only and

set m2
u,d,s = 0. In appendix B we will extend our results to heavy quarks.

Collinear factorization for the hadronic tensor can be obtained by expanding the parton

momentum k in figure 1 around its positive light-cone component,

k̃µ = xp+nµ . (2.8)

Correspondingly, we can define the collinear invariant

x̃f =
−q2

2k̃ · q
=
ξ

x
. (2.9)

According to the QCD factorization theorem [1], the nucleon hadronic tensor can then be

factorized as follows:

W µν(p, q) =
∑

f

∫
dx

x
Hµν

f (k̃, q)ϕf/N (x,Q2,m2
N ) +O(Λ2/Q2) (2.10)

where Hµν
f is the short-distance partonic tensor for scattering on a parton of flavor f ,

and ϕf/N is the leading twist parton distribution function for a parton of flavor f inside

a nucleon N , see figure 1. For example, the quark distribution at leading order in αs is

defined as

ϕq(x,Q
2,m2

N ) =

∫
dz−

2π
e−ixp+z−〈p|ψ(z−n)

γ+

2
ψ(0)|p〉 . (2.11)

A proper gauge link between the two fermion field operators is required to have a gauge-

invariant parton distribution, but drops out if one chooses the light-cone gauge n · A = 0,
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net baryon number

p2

j ≥ 0

p2

Y ≥ m2

N

pj

pY

˜
k

p

q

Figure 2: DIS in the impulse approximation, for the special case of an internal on-shell light

parton, k2 = 0, relevant to collinear factorization. The current jet has momentum pj and the target

jet has momentum pY . The net baryon number is only shown to flow in the target jet (lower part

of the graph).

where A is the gluon field. Higher orders in the Taylor expansion are suppressed by powers

of Λ2/Q2, with Λ a hadronic scale, and contribute to restore gauge invariance in higher twist

terms [14]. We will discuss in detail how to obtain such a factorized form in section 3. In

eq. (2.10), the partonic tensor Hµν can be computed perturbatively to any order in αs, and

can depend on the nucleon mass only kinematically through the invariant x̃f . Dynamical

target mass corrections can enter only through the proton wave function |p〉, whence the

explicit dependence of ϕ on m2
N in eqs. (2.10)-(2.11). From now on we will suppress such

dependence for ease of notation. For higher twist terms, the situation is more complicated,

because the equations of motion may induce dynamical correlations between lower- and

higher-twist terms [13], but we will not discuss this issue here.

Structure functions are obtained by suitable projections of the tensors in eq. (2.10),

see appendix B. In this paper, we choose the helicity basis to perform the projection of

the W µν and Hµν tensors. The transverse and longitudinal structure functions read

FT,L(xB , Q
2,m2

N ) =
∑

f

∫
dx

x
hf |T,L(x̃f , Q

2)ϕf (x,Q2) . (2.12)

The advantage of the helicity basis is that in the right hand side there are no kinematic

prefactors, which would appear when considering the F1,2 structure functions, as discussed

in ref. [26] and reviewed in appendix B.

Applying the factorized eq. (2.10) without paying attention to the kinematic limits on

x, which have been understood in eq. (2.10), and using eq. (2.9), one would obtain what

we call the “näıve” TMC in collinear factorization:

F nv
T,L(xB , Q

2,m2
N ) = F

(0)
T,L(ξ,Q2) , (2.13)

where F
(0)
T,L are the structure functions as they would be defined and computed in the mass-

less nucleon limit by setting m2
N = 0 from the beginning. Indeed, the partonic structure

– 6 –



J
H
E
P
0
7
(
2
0
0
8
)
0
9
0

Figure 3: Comparison of prescriptions for NLO target mass corrections to the F2 structure func-

tion. The ratio F2/F
(0)
2 is plotted as a function of xB and Q2. The structure functions have been

computed using MRST2002 parton distributions [3].

functions hf |T,L are independent of the hadron target, and are defined in the same way

for the massive and massless nucleon cases. As a consequence of the fact that F
(0)
T,L(y,Q2)

has support over 0 < y ≤ 1, the target mass corrected F nv
T,L can be different from zero in

the kinematically forbidden region 1 < xB ≤ 1/(1 −m2
N/Q

2). The appearance of such an

unphysical region is also a feature of the OPE approach [17, 18], as discussed in the intro-

duction. eq. (2.13) has been introduced in ref. [26] and compared to the OPE approach in

refs. [24, 25].

In fact, a closer examination of the handbag diagram kinematics reveals that there is no

unphysical region. Let us consider the handbag diagram in the right hand side of figure 1,

and limit the discussion to on-shell light quarks or gluons, k2 = 0, in both the initial and

final states. The general case of off-shell partons, including heavy quark production is

discussed in appendix A. Because of baryon number conservation, the net baryon number

must flow either into the target jet or into the current jet. We shall separately examine

these two cases. If the net baryon number flows into the target jet (bottom part of figure 2),

the jet invariant masses satisfy m2
j = p2

j ≥ m2
f and p2

Y ≥ m2
N . Let us consider the invariant

momentum square of the process, s = (p + q)2 = (pj + pY )2. Since the 2 jets are made of

on-shell particles, pj · pY ≥ 0. Hence, s ≥ m2
j + m2

N . In summary, the current jet mass

must satisfy

0 ≤ m2
j ≤ s−m2

N . (2.14)

Since s − m2
N = (1/xB − 1)Q2, eq. (2.14) guarantees that the handbag diagram is non-

zero only when xB ≤ 1, as it must be on general grounds because of baryon number

conservation, irrespective of the model used to compute the process. On the other hand, if

the net baryon number flows into the current jet (top part of figure 2). The invariant jet

– 7 –
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Figure 4: Comparison of prescriptions for NLO target mass corrections to the ratio of the lon-

gitudinal and transverse cross sections, R = σL/σT = FL/F1. The ratio R/R(0) is plotted as a

function of xB and Q2. The structure functions have been computed using MRST2002 parton

distributions [3].

masses satisfy m2
j ≥ m2

N and p2
Y ≥ 0, so that

m2
N ≤ m2

j ≤ s , (2.15)

which again guarantees that the handbag diagram respects the xB ≤ 1 limit. Within the

collinear factorization approach, the momentum of the active quark entering the short-

distance hard part that generates the current jet is approximated to be on mass shell,

k̃2 = 0 ≪ m2
N . That is, the baryon number is very likely to flow into the target jet for the

factorized contribution to the DIS cross section, and eq. (2.14) gives the relevant limits on

m2
j . Using m2

j = (k̃ + q)2 = (1/x̃f − 1)Q2 and x̃f = ξ/x in eq. (2.14), we obtain

xB ≤ x̃f ≤ 1 , (2.16)

which implies the following limits on the dx integration in eq. (2.12):

ξ ≤ x ≤ ξ

xB
(2.17)

eqs. (2.16)-(2.17) explicitly guarantee FT,L = 0 if xB > 1, so that there is no unphysical

region for target mass corrected structure functions:

FT,L(xB , Q
2,m2

N ) =

∫ ξ/xB

ξ

dx

x
hf |T,L(x̃f , Q

2)ϕf (x,Q2) . (2.18)

Eq. (2.18) is our formula for calculating DIS structure functions with the TMC. As ex-

pected, it has the hadron mass dependence explicitly in the integration limits caused by the
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DIS kinematics and implicitly from the hadron states in the definition of the PDFs. The

näıve structure functions (2.13) are obtained when considering x ≤ 1 as upper integration

limit in eq. (2.18). This limit is a general and process-independent consequence of the

definition of a parton distribution in the field theoretic parton model [27], but in DIS it is

weaker than x ≤ ξ/xB , which is induced by 4-momentum and baryon number conservation.

In the massless target limit, m2
N/Q

2→0, the constraint (2.17) reduces to xB ≤ x ≤ 1, and

we recover the massless structure functions as we should expect:

FT,L(xB , Q
2,m2

N ) −−−−−−−→
m2

N
/Q2→0

F
(0)
T,L(xB , Q

2) . (2.19)

In figure 3, we plot the ratio of the TMC corrected F2 to the massless F
(0)
2 , with TMC

computed using the analog of eq. (2.18), see appendix B.3, the naive prescription (2.13),

and the Georgi-Politzer prescription. The corrections are in general quite large at Q2 = 2,

but still non negligible at the generally considered “safe” scale Q2 = 25 GeV2. From the

right panel of the figure, one can estimate how large Q2 should be to safely neglect TMC.

At xB . 0.5 the TMC are smaller than 5% if Q2 & 10 GeV2. However, at larger xB, one

may need to go to Q2 & 100 GeV2 for TMC to become small. Note also the difference

between F2 and F nv
2 , which is smaller than 30-40% at Q2 = 2: it gives the size of the

contribution of the unphysical region ξ/xB < x ≤ 1, which has to be subtracted from the

näıve structure function.

The difference between TMC of F2 (and similarly of F1,T ) in collinear factorization and

in the Georgi-Politzer formalism is smaller than 15-20% at the lowest scale, and rapidly

disappears at larger scales. So one is tempted to brush aside the question of what formalism

is correct, if willing to accept this level of uncertainty. However, the situation completely

changes when considering FL, or the ratio R of the longitudinal to transverse cross section,

R =
σL

σT
=
FL

F1
, R(0) =

F
(0)
L

F
(0)
1

, (2.20)

whose TMC/massless ratios are plotted in figure 4. (Note a factor of 2xB with respect

to other common conventions, see appendix B.2.) The TMC of R are much larger than

for F2. Most importantly, the difference between the collinear factorization and Georgi-

Politzer TMC is huge, up to a factor 10 (5) at Q2=2 (25) GeV2! Therefore, one has to

decide which formalism to use. This is especially important for a fit of the gluon PDF, to

which FL is sensitive.

It is also important to note that our formula for TMC in eq. (2.18) explicitly eliminates

the kinematically forbidden region 1 < xB ≤ 1/(1 − m2
N/Q

2) because of the integration

limits on the parton momentum fraction x. As xB → 1, structure functions calculated by

using eq. (2.18) approach to zero, the kinematic limit, smoothly, except for the lowest order

contribution, whose partonic structure functions are derived from the tree level handbag

diagram in figure 5. Indeed, by explicit computation at tree level in the approximation of

massless quarks, we obtain

hq|T (x̃f , Q
2) =

1

2
e2f δ(x̃f − 1) =

1

2
e2f x δ(x− ξ) , (2.21)

– 9 –
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p

=
˜
k

µ ν

⊗
p

µ ν
q

k
k

q
m2

f = 0
m2

f = 0

Figure 5: DIS handbag diagram at leading order in αs.

where ef is the electric charge of the parton f . Substituting the tree-level partonic structure

function into eq. (2.18), the lowest order contribution to the transverse structure function,

FT (xB , Q
2,m2

N ) =

{
F

(0)
T (ξ,Q2) xB ≤ 1

0 xB > 1 ,
(2.22)

remains positively finite when xB → 1 and does not vanish as xB→1, as shown by the

dashed line in figure 6,

This problem exists only at the lowest order and arises because of the δ-function

behavior of the partonic structure function (2.21) and the assumption that the final-state

is made of a massless quark, m2
f = 0, as shown in figure 5. The δ-function bypasses the

kinematic constraint from the integration limits in eq. (2.18) and forces x = ξ(xB), which

exhibits the mismatch between the phase space for x at the parton level and that for ξ(xB)

at the hadron level. Under the collinear approximation the momentum fraction x for a

massless parton can be as large as 1, while the plus momentum fraction of the virtual

photon ξ(xB) smaller than 1 for a finite target mass mN . As a result, the perturbatively

calculated structure functions do not vanish at xB = 1 because the PDFs are finite at

x = ξ(xB = 1) = 2/(1 +
√

1 + 4m2
N/Q

2) < 1. As we will discuss in the next section, this

explicit phase space mismatch at the lowest order could be improved if the single massless

quark final-state in figure 5, which is not physical, is replaced by a jet function as shown

in figure 7.

We conclude this section by stating that if one is performing global QCD fits of the

PDFs in the context of pQCD collinear factorization, our formalism in eq. (2.18) might

be the most consistent way to treat TMC, because it expresses the long distance physics

of structure functions and the leading target mass correction in terms of PDFs that share

the same partonic operators with the PDFs of zero hadron mass. Moreover the structure

functions calculated using our formulae do not have the xB > 1 unphysical region and

vanish at the xB = 1 kinematic limit except for the lowest order contribution that will be

discussed further in next section. The same collinear factorization formalism can be easily

and consistently extended to semi-inclusive DIS measurements and hadronic collisions, for

which the OPE formalism is not applicable, but which are included in global QCD fits of

– 10 –
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Figure 6: Transverse structure function plotted as a function of xB , with and without target and

jet mass corrections, computed with only light quarks at lowest order in αs using MRST2001LO

parton distributions [36]. The dotted line is the massless structure function. The dashed line

includes only TMC, and corresponds to Z = 1 in eq. (3.42). The solid line corresponds to JMC

coming only from the continuum part ρ of the jet spectral function, Z = 0 in eq. (3.42). JMC

are computed using a log-normal spectral function with 〈m2
j 〉 = 0.3GeV2 and standard deviation

σm2

j
= 〈m2

j 〉.

parton distributions. Careful analysis of kinematics and conservation laws will guarantee

that no unphysical region appears in these observables, as well. The obtained formulae will

not merely be an approximation to the TMC for those processes, as argued in [25, 24], but

will give the correct answer in the context of pQCD collinear factorization.

3. Jet mass corrections

In this section we discuss the possibility to include a jet function into the lowest order

contribution to have a more realistic kinematic constraint on the “single quark” final-

state [16]. Hopefully, we can reduce the unphysical positive value of structure functions

at xB = 1. As discussed in the last section, this is caused by the δ-function behavior of

the partonic structure functions, the assumption that the final-state is made of a massless

quark, m2
f = 0, and the mismatch between the phase space for ξ(xB) and x.

The assumption that the leading order final-state is made of a massless quark, m2
f = 0,

is clearly unphysical because the quark has to hadronize due to color confinement, so that

the current jet will have an invariant mass m2
j . Then, we may heuristically set m2

f = m2
j

– 11 –
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µ
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k

q l

Ĵ(l)

T̂ (k)

ν

Figure 7: DIS handbag diagram at leading order in αs generalized to include a jet function Ĵ(l)

beside the target function T̂ (k).

for the cut quark line, and substitute δ(x̃f − 1) with δ(x̃f − 1/(1 +m2
j/Q

2)) in eq. (2.21):

hq|T (x̃f , Q
2)−→1

2
e2f x δ

(
x− ξ

(
1 +

m2
j

Q2

))
. (3.1)

Furthermore, we may assume that the current jet has an invariant mass probability distri-

bution Jm(m2
j ) normalized to 1, and accordingly smear the structure functions in (2.18):

F JMC
T (xB , Q

2,m2
N ) =

∫ ∞

0
dm2

jJm(m2
j )

∫ ξ/xB

ξ

dx

x
hf |T (x̃f , Q

2)ϕf (x,Q2)

=

∫ 1−xB
xB

Q2

0
dm2

jJm(m2
j)F

(0)
T

(
ξ(1 +m2

j/Q
2), Q2

)
.

(3.2)

If Jm(m2
j ) is a sufficiently smooth function of m2

j , we obtain

F JMC
T (xB , Q

2,m2
N ) −−−−→

xB→1
0 . (3.3)

The jet mass corrections (JMC) so introduced are of order O(m2
j/Q

2). It is easy to see

that in the limit Q2 ≫ 〈m2
j〉, the massless F

(0)
T decouples from the integration over the jet

mass, and we recover the structure function with TMC:

F JMC
T (xB , Q

2,m2
N ) −−−−−−→

Q2≫〈m2
J
〉
FT (xB , Q

2,m2
N ) . (3.4)

In the following, we will discuss how to put this Ansatz on a more firm theoretical

basis.

3.1 Collinear factorization with a jet function

We aim at including in the DIS handbag at leading order in αs a suitable jet function

to take into account the invariant mass of the jet produced by the hadronization of the

struck quark, see figure 7. Note that in computing the DIS cross section with the handbag

diagram of figure 7, we are making several assumptions. First, we are assuming that it

– 12 –
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makes sense to separate the final state into a current jet and a target jet, respectively the

top and the bottom blob. Because of color confinement, this separation can only make

sense as an approximation, and is justified for inclusive and semi-inclusive cross sections if

the rapidity separation between the 2 jets is large enough. This is in general the case at

asymptotically large Q2. However, at finite Q2, the rapidity difference between the 2 jets

tends to 0 as xB→1, and the struck quark may participate in the hadronization process

together with the unstruck target partons. Thus, we need to take care in estimating the

range in xB in which the handbag diagram is a meaningful approximation to the DIS

process. The second assumption we make, intimately related with the first one, is that

color neutralization of the current jet happens via the exchange of soft momenta, which

we can neglect when discussing 4-momentum conservation.

In order to obtain a collinear factorization formula, we will closely follow the procedure

of Ellis, Furmanski and Petronzio [13]. The hadronic tensor is

W µν(p, q) =
e2f
8π

∫
d4k

(2π)4
Tr

[
T̂ (k)γν Ĵ(l)γµ

]
K(k, p, q) . (3.5)

where we considered only 1 flavor for simplicity. The sum over quark flavors will be restored

at the end of the computation. We use a hat to denote a matrix in Dirac space. The trace

over color indexes can be easily factorized and included in the target function [13]. The

remaining trace is over Dirac indexes. The target function T̂ is defined as

[
T̂ (k)

]
ij

=
∑

Y

δ(4)
(
p− k −

∑

i∈Y

pi

)∣∣〈p|k, Y 〉
∣∣2

=

∫
d4zeiz·k〈p|ψj(z)ψi(0)|p〉 ,

(3.6)

where 〈k, Y | = 〈k|〈Y |, 〈Y | are all possible final states originating from the target fragmen-

tation, and 〈k| is a parton state of momentum k. Analogously, the jet function Ĵ is the

non-perturbative quark propagator:

[
Ĵ(l)

]
ij

=
∑

Y

δ(4)
(
l −

∑

i∈Y

pi

)∣∣〈l|Y 〉
∣∣2

=

∫
d4zeiz·l〈0|ψj(z)ψi(0)|0〉 ,

(3.7)

and 〈l| is a quark state of momentum l. The jet momentum is constrained by momentum

conservation to l = k+q, but it is useful to keep it explicit in our formulae. The function K is

included to impose the kinematic constraints, the non-trivial one being xmin
f ≤ xf ≤ xfmin,

see appendix A:

K(k, p, q) = θ(k+ + q+)θ(k− + q−)θ(p+ − k+)θ(p− − k−)θ(xf − xB)θ(1 − xf ) , (3.8)

where, for light quarks,

xmin
f =

xB

1 − xBk2/Q2

xmax
f =

1

1 − k2/Q2
.

(3.9)
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To obtain the leading power contribution, we expand T̂ (k) in terms of Dirac matrices and

neglect terms that depend on the vector defining the direction of the gauge link in the

PDFs, which are suppressed by powers of 1/Q2 [14],

T̂ (k) = τ1(k)̂I + τ2(k)k/ + τ3(k)γ5 + τ4(k)k/γ5 , (3.10)

and, analogously, we expand Ĵ as :

Ĵ(l) = j1(l)̂I + j2(l)l/ + j3(l)γ5 + j4(l)l/γ5 . (3.11)

For massless quarks, τ1 = 0. The terms τ3,4, which are proportional to γ5 cancel when

computing unpolarized cross sections. In pure QCD, j3,4 = 0 because of parity invariance,

and j1 only enters in traces with an odd number of γ matrices, hence does not contribute.

We are left with the terms proportional to τ2 and j2. The dominance of the k+ and l−

components of k and l in the Breit frame suggests to define

τ2(k) =
1

4k+
Tr

[
n/T̂ (k)

]
=

1

4k+

∫
d4zeiz·k〈p|ψ(z)γ+ψ(0)|p〉 (3.12)

j2(l) =
1

4l−
Tr

[
n/Ĵ(l)

]
=

1

4l−

∫
d4zeiz·l〈0|ψ(z)γ−ψ(0)|0〉 . (3.13)

After these manipulations, the hadronic tensor reads

W µν(p, q) =

∫
dk+dk−d2kT

(2π)4
e2f
8π

Tr
[
k/γν l/γµ

]
j2(l) τ2(k) K(k, p, q) , (3.14)

where

kµ = xp+nµ +
k2 + k2

T

2xp+
nµ + k µ

T (3.15)

lµ = (x− ξ)p+nµ +

(
k2 + k2

T

2xp+
+

Q2

2ξp+

)
nµ + k µ

T . (3.16)

For later use, let us also define

1

π
Hµν

∗ (k, l) =
e2f
8π

Tr
[
k/γν l/γµ

]
. (3.17)

Our goal is to obtain a factorized expression for the hadronic tensor in terms of collinear

parton distribution functions, see for example eq. (2.11). For this purpose we need to let∫
dk−d2kT act only on τ2(k), which defines the collinear PDF modulo factors of 2. In doing

this we will be forced to make approximations on the momenta entering and exiting the

hard scattering vertex, viz., k and l. In principle, one would like to avoid it and allow

approximations in the computation of the hard scattering tensor only [16]. In this way, one

can ensure that the final state obeys 4-momentum conservation, and avoid potentially large

errors in region of phase-space close to the kinematic boundaries. While in most cases this

is not a problem for inclusive cross sections, it might become very important for exclusive

observables. In our case, we want to compute the inclusive DIS cross section at large xB→1
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in collinear factorization: in order to extend the validity of our computation as close as

possible to this kinematic boundary, we need to pay attention to the approximations we

will make, keep them at a minimum, and estimate the range of validity in xB and Q2 of

the approximations we will have to make.

The first step in the collinear factorization of the hadronic tensor (3.14), is to expand

Hµν
∗ around the momentum of a collinear and massless quark:

Hµν
∗ (k, l) = Hµν

∗ (k̃, l̃) +
∂Hµν

∗

∂kα
(kα − k̃α) + . . . (3.18)

where

k̃µ = xp+nµ

l̃µ = k̃µ + qµ .
(3.19)

The higher order terms in the expansion are suppressed as powers of Λ2/Q2, where Λ2 is

a hadronic scale, and contribute to restore gauge invariance in higher-twist diagrams [14].

In this paper, we will retain only the leading twist term of the expansion. Note that we

did not yet make any kinematic approximation: in principle, one may sum over as many

higher-twist terms as desired.

The second step involves using the spectral representation of Ĵ [28] to explicitly intro-

duce the invariant jet mass in the formalism:

Ĵ(l) =

∫ ∞

0
dm2

j

[
J1(m

2
j )̂I + J2(m

2
j )l/

]
2πδ(l2 −m2

j)θ(l
0) , (3.20)

where the spectral functions Ji(m
2
j ) are positive definite and normalized to 1:

∫ ∞

0
dm2

j Ji(m
2
j ) = 1 . (3.21)

In particular, by substituting eq. (3.20) into (3.13), we obtain

j2(l) =

∫ ∞

0
dm2

j J2(m
2
j) 2πδ(l2 −m2

j) θ(l
0) , (3.22)

so that we can interpret mj as the jet invariant mass, and J2(m
2
j) as its probability distri-

bution.

In the light-cone gauge n · A = 0, the jet spectral function is related to the non

perturbative quark propagator:

∫ ∞

0
dm2

j J2(m
2
j ) 2πδ(l2 −m2

j) θ(l
0) =

1

4l−

∫
d4zeiz·lTr

[
γ−〈0|ψ(z)ψ(0)|0〉

]
. (3.23)

Computations of the non-perturbative quark propagator have been performed in lattice

QCD [29] and using Schwinger-Dyson equations, see [30] for a review. However, there are

several difficulties in extracting information relevant to the jet spectral function from these

computations: (i) the quark-antiquark correlator appearing in (3.23) is typically computed

in the Landau gauge instead of the light-cone gauge, (ii) computations are performed
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in Euclidean space instead of Minkowski space, (iii) one needs to extract the spectral

representation from the computed correlator. The biggest problem is that the analytic

structure of the quark propagator is not sufficiently well known to either perform the

analytic continuation back to Minkowski space or to extract its spectral representation [30,

31]. As a way to avoid this problem, it would be interesting to see if it is possible to

rotate the whole handbag diagram, including its external momenta, to Euclidean space

as done in [32] for the computation of the hadronic contribution to the muon anomalous

magnetic moment. In this way one would be able to directly use the lattice propagator in

the computation of the forward Compton amplitude. Alternatively, one may try to use the

light-cone QCD formulation on the lattice discussed in [33], which exploits the Hamiltonian

formulation of QCD in order to remain in Minkowski space. A more phenomenological

approach to the spectral function will be discussed in the next subsection.

The third step involves our first kinematic approximation. In order to factorize j2 from

the dk−d2kT integrations, we need to approximate l→l̃, so that

j2(l)−→ j2(l̃) =

∫ ∞

0
dm2

j J2(m
2
j) 2πδ(l̃2 −m2

j) θ(l
0) . (3.24)

Then, the hadronic tensor reads

W µν(p, q) =

∫ ∞

0
dm2

j J2(m
2
j )

∫
dk+Hµν

∗ (k̃, l̃) δ(l̃2 −m2
j)

∫
dk−d2kT

(2π)4
2τ2(k) K(k, p, q)

(3.25)

where θ(l0) = θ(k0 + q0) is already included in the kinematic constraint function K(k, p, q).

We can expect the approximation (3.24) to be reasonable in a region where j2(l) does not

vary strongly with l. In terms of the spectral representation, this requirement is satisfied

if the integral in eq. (3.25) is dominated by values of m2
j close to where the jet spectral

function has a maximum. We will discuss below the conditions on xB and Q2 for which this

condition is satisfied. Note that this kinematic approximation only acts on the δ-function

in eq. (3.25) so that J2(m
2
j ) has been left unapproximated: in this sense the approximation

is the mildest possible compatible with collinear factorization.

The fourth step involves decoupling K and τ2 in eq. (3.25). It can be achieved by

replacing

K(k, q, p)−→K(k̃, q, p) = θ(x̃f − xB)θ(1 − x̃f ) . (3.26)

Note that θ(k̃0 + q0) = θ(p+ − k̃+) = θ(p− − k̃−) = 1 because of the constraints on x̃f . In

terms of x,

ξ ≤ x ≤ ξ/xB . (3.27)

This is a delicate step because it involves approximating the kinematic constraints, such

that the integration over kT and k− are unbounded. This clearly is not a good approx-

imation as xB→1 [16], in which case the struck parton carries most of the nucleon plus-

momentum, so that the minus and transverse components cannot be large. To appreciate
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this, consider

s = (p+ q)2 = (pY + l)2 , (3.28)

where pY is the total four momentum of the target jet, and we define m2
Y = p2

Y ≥ 0, see

figure 2. Using the full kinematics of eq. (2.3), we obtain

s =
1 − ξ

ξ
Q2 + (1 − ξ)m2

N . (3.29)

On the other hand, in the center-of-mass frame, ~pY = −~l and ~pY,T = −~lT = −~kT , so that

s = (p0
Y + l0)2 (3.30)

=
(√

m2
Y + k2

T + (p3
Y )2 +

√
m2

j + k2
T + (l3)2

)2
> 4k2

T

Combining these 2 results, we obtain

k2
T <

1 − ξ

4ξ
Q2

(
1 + ξ

m2
N

Q2

)
. (3.31)

As xB→1, ξ→ξth . 1 so that the (1− ξ) factor tends to close the available kT phase space.

In section 3.3, we will discuss in which region of xB and Q2 we may in fact neglect this

bound. Using the definition (3.12) of τ2, the hadronic tensor reads

W µν(p, q) =

∫ ∞

0
dm2

j J2(m
2
j )

∫ ξ/xB

ξ

dx

x
Hµν

∗ (k̃, l̃) δ(l̃2 −m2
j)ϕq(x,Q

2) , (3.32)

where the quark PDF ϕq is defined as in eq. (2.11).

As a last step, we define an on-shell and massless jet momentum for the partonic

tensor,

l̂µ = l̃−nµ =
Q2

2ξp+
nµ (3.33)

and replace

Hµν
∗ (k̃, l̃)−→Hµν

∗ (k̃, l̂) =
e2f
8

Tr
[
k̃/γν l̂/γµ

]
(3.34)

This is needed: (i) to ensure that qµH
µν
∗ = 0, hence the gauge invariance of the hadronic

tensor, and (ii) to allow use of the Ward identities in proofs of factorization [16]. This

approximation, made on the hard scattering coefficient, is less critical then the kinematic

approximations previously discussed because it does not change in itself the kinematics of

the process. It is analogous to the approximation taken in considering the usual handbag

diagram of figure 5 with a massless quark line joining the 2 virtual photon, except that it

approximates only the computation of the Dirac traces.

Finally, we define the LO hard scattering tensor

Hµν
f (k̃, q,m2

j ) = Hµν
∗ (k̃, l̂)δ(l̃2 −m2

j) (3.35)

= Tr
[
k̃/γν l̂/γµ

]
δ(l̃2 −m2

j) , (3.36)
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which for m2
j = 0 coincides with the LO hard scattering tensor computed for a diagram

without jet function, as in eq. (2.10). The hadronic tensor can then be written in factorized

form as

W µν(p, q) =

∫ ∞

0
dm2

j J2(m
2
j )

∫ ξ/xB

ξ

dx

x
Hµν

f (k̃, q,m2
j )ϕq(x,Q

2) ,

which is the central result of this section. The transverse structure function reads

FT (xB , Q
2,m2

N ) =

∫ ∞

0
dm2

j J2(m
2
j )

∑

f

∫ ξ/xB

ξ

dx

x
hf |T (x̃f , Q

2,m2
j )ϕq(x,Q

2) , (3.37)

with ϕq defined in eq. (2.11). The longitudinal structure function FL = 0 because hL = 0.

An explicit computation gives hT (x̃f , Q
2) = 1

2e
2
fxδ

(
x− ξ(1 +m2

j/Q
2)

)
so that at LO

FT (xB , Q
2,m2

N ) =

∫ 1−xB
xB

Q2

0
dm2

jJ2(m
2
j )F

(0)
T

(
ξ

(
1 +

m2
j

Q2

)
, Q2

)
, (3.38)

Note that when Q2 ≫ 〈m2
j 〉, where 〈m2

j 〉 =
∫
dm2

j m
2
jJ2(m

2
j), the massless F

(0)
T decouples

from the integration over the jet mass, and we recover the TMC to the LO structure

functions.

3.2 The jet spectral function

Let us discuss more in detail the properties of the nonperturbative quark spectral function

J2, defined in eq. (3.22). Let us start from the definition of the j2 component of the jet

function,

j2(l) =
1

4l−
Tr

[
γ−Ĵ(l)

]

=
∑

Y

δ(4)
(
l −

∑

i∈Y

pi

)
〈0|ψ̄f (0)|Y 〉γ−〈Y |ψf (0)|0〉 ,

(3.39)

with f the quark flavor. For simplicity, we consider only light quark flavors with mf ≪ mπ.

The color c of the quark operator ψ is not neutralized, so that it must appear in the

final state |Y 〉. In the physical process, we are assuming that the struck quark’s color

is neutralized by a soft gluon exchange with the target’s remnant. We also assume that

we can neglect the soft exchange for the purpose of evaluating the change of kinematics

induced by the inclusion of a quark jet function on the lowest order contribution to the

inclusive DIS. This assumption is likely valid if the jet and target rapidities are sufficiently

separated. However, this might not be the case close to the kinematic limit xB = 1, and

the approximation will break down as we shall soon see. Because of color confinement, we

may assume that no more than 1 particle in the final state is colored, all the other ones

binding into colorless hadrons. The colored particle must be a quark, to match the quark

operator’s color, and we denote it by |qc
f ′〉. Hence, the final state is made of 1 quark plus

an arbitrary number of hadrons, the lightest of which is a pion:

|Y 〉 = |qc
f ′〉|h1〉 · · · |hN 〉 , (3.40)
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with N ≥ 0 and f ′ = f when N = 0. The spectral function J2, defined in eq. (3.22), can

be written as

J2(m
2
j ) = Zδ(m2

j −m2
q) + (1 − Z)ρ(m2

j ) , (3.41)

where the δ-function is due to the contribution of the single particle |qc
f ′〉, and 0 < Z <

1 [28]. The continuous and positive definite function ρ is the contribution of multiparticle

states with N > 0 in eq. (3.40) and is normalized to 1 because of eq. (3.21). Due to the

assumption (3.40), ρ has a bell shape: it is equal to 0 up to m2
j = (mπ + mq)

2 ≈ m2
π,

increases up to a maximum and then tends to 0 as m2
j→∞ to satisfy the normalization

condition. Using eq. (3.41) in (3.38), we obtain

FT (xB , Q
2,m2

N ) = Z F
(0)
T

(
ξ,Q2

)
+ (1 − Z)

∫ 1−xB
xB

Q2

mπ

dm2
jρ(m

2
j )F

(0)
T

(
ξ

(
1 +

m2
j

Q2

)
, Q2

)
.

(3.42)

Setting Z = 1 is equivalent to calculating the standard handbag diagram without the jet

function, and one recovers the TMC formula.

The first term in eq. (3.42) shows that the introduction of the jet function in the hand-

bag diagram goes some way toward softening the problem with the unphysically positive

FT at xB = 1, but does not solve it. The reason is that we cannot kinematically neglect the

effect of the color neutralizing soft interactions when we compute the hadbag diagram close

to xB = 1, where the rapidity difference between the current and target jets is becoming

smaller and smaller. A full solution to this problem is the inclusion of a “soft function”, in

addition to the target and jet functions, which describes the soft exchanges in the context

of fully unintegrated correlation functions [16]. The soft function has essentially the effect

of smearing the jet function, avoiding the singular behavior displayed by the δ-function.

For a phenomenological inclusion of the soft function in collinear factorization, we can

substitute J2 with a continuous function Jm such that

Jm(m2
j) −−−−→

m2
j→0

0 , (3.43)

because of phase space, and

Jm(m2
j ) −−−−−→

m2
j≫m2

π

J2(m
2
j) . (3.44)

It can be physically interpreted as the (smeared) jet mass distribution, analogously to J2,

and we will call it smeared jet spectral function. The structure function is then computed

as in the Ansatz discussed at the beginning of the section:

FT (xB , Q
2,m2

N ) =

∫ 1−xB
xB

Q2

mπ

dm2
jJm(m2

j )F
(0)
T

(
ξ

(
1 +

m2
j

Q2

)
, Q2

)
. (3.45)

We note that the jet spectral function J2 is defined as a quark correlation function in

vacuum, therefore it is process-independent. On the other hand, the smeared jet function
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Jm is process-dependent because it effectively includes the soft momentum exchange with

the target. As a result, it’s shape at m2
j . m2

π might depend on xB and Q2. However, the

average jet mass squared, 〈m2
j 〉m =

∫ ∞
0 dm2

j m
2
j Jm(m2

j) should exhibit a small sensitivity

on xB andQ2 because we may expect 〈m2
j〉 ≫ m2

π, see section 3.3. Eq. (3.45) is a reasonable

approximation to the full handbag diagram computation in the region of (xB , Q
2) phase

space where the integration over dm2
j in eq. (3.38) extends well beyond the peak of the

continuum ρ(m2
j ), namely if

1 − xB

xB
Q2 & 〈m2

j〉ρ , (3.46)

where

〈m2
j 〉ρ =

∫ ∞

m2
π

dm2
j m

2
jJ2(m

2
j ) . (3.47)

In these conditions, the structure function (3.45) is not much sensitive to the behavior of

the jet function at small m2
j , where Jm may substantially differ from J2.

For practical applications of JMC to global QCD fits of the PDFs, it is necessary to

develop a flexible enough and realistic parametrization of the smeared jet spectral function

Jm. For this purpose, one may try to use a Monte Carlo simulation of DIS events in

order to generate enough data and test possible parametrizations. One may also study

the invariant jet mass distribution in e+ + e−→ jets events, where the same jet function Ĵ

discussed in this section appears in the LO cross-section. However, these studies lie outside

the scope of this paper, and we leave them for the future.

3.3 Numerical estimates

In order to obtain an estimate for the magnitude of JMC and of the present theoretical

uncertainty, we employ a toy model for the jet spectral function. Let’s consider a bell-

shaped smooth function such as the log-normal distribution

f(x;µ, σ) =
1

xσ
√

2π
exp

[
−(log x− µ)2

2σ2

]
(3.48)

where

µ =
1

2
log

(
x̄4

x̄2 + σ2
x

)

σ =

[
log

(
σ2

x

x̄2
+ 1

)] 1

2

,

(3.49)

and x̄ and σx are the average value of x and its standard deviation. Then, we can

parametrize the continuum part ρ of the toy jet mass distribution in eq. (3.38) in terms of

the average jet mass 〈m2
j 〉ρ and its standard deviation σm2

j
:

ρ(m2
j) = f(m2

j −m2
π;µ, σ) , (3.50)

– 20 –



J
H
E
P
0
7
(
2
0
0
8
)
0
9
0

Figure 8: Effect of jet mass corrections on FT , computed with a toy jet spectral function as

described in the text. Plotted is the ratio of FT with both TMC and JMC to FT with only TMC

included, as a function of xB for Q2 = 2 and 25 GeV2. The shaded band corresponds to a log-

normal jet mass distribution with 〈m2
j〉 = 0.2 − 0.4GeV2 and σm2

j
= 〈m2

j 〉 − 2〈m2
j〉. The dashed

and dot-dashed lines corresponds to delta functions at m2
j = m2

π and m2
j = m2

N , respectively.

with

µ = 〈m2
j 〉ρ −m2

π

σ = σm2
j

(3.51)

in units of GeV2. From the typical particle multiplicity of the current jet at the JLab

energy, we estimate 〈m2
j〉ρ = 0.2 − 0.4 GeV2, and assume σm2

j
= C〈m2

j〉ρ with C = 1 − 2.

In figure 6, we plot the JMC to the transverse structure function as obtained in

eq. (3.38) by neglecting soft momentum exchanges. The dashed line corresponds to Z = 1,

and is equivalent to computing only TMC. The solid line corresponds to JMC coming only

from the continuum part ρ of the jet spectral function, i.e., Z = 0. For comparison, the

massless structure function is plotted as a dotted line. The true jet mass corrected FT

should lie somewhere in between because 0 < Z < 1, in general. With the smearing due

to soft interactions, see eq. (3.45), the true FT will tend to 0 as xB→1.

The sensitivity of JMC to the 〈m2
j 〉ρ value can be gauged from figure 8, where we

plotted the ratio of the Z = 1 TMC-only structure function to the Z = 0 jet mass corrected

structure function. For comparison, we also use ρ(m2
j ) = δ(m2

j −m2
π) and ρ(m2

j) = δ(m2
j −

m2
N ), considered as extreme cases of JMC. In the absence of a better knowledge of the value

of Z and 〈m2
j〉, the overall theoretical uncertainty on JMC can be quite large, especially at

low Q2 = 2 GeV2, and is still non-negligible at Q2 = 25 GeV2. At moderate xB . 0.6 it is

of the same order of magnitude of the TMC corrections to the massless FT .

Finally, we want to estimate in which region of xB and Q2 the kinematic approxi-

mations involved in step 3 and 4 of the factorization procedure are expected to be valid.
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Figure 9: Range of validity of kinematic approximations used in deriving TMC and JMC. The

solid line corresponds to eq. (3.52) with 〈m2
j 〉 = 0.3GeV2; the dashed line corresponds to eq. (3.53)

and (3.54), with k2
Tmin = 0.04GeV2.

As we discussed after eq. (3.25), replacing j2(l) with j2(l̃) makes sense only if the integral

over dm2
j is dominated by m2

j ≈ m2
j|max, where the spectral function J2 has a maximum,

hence minimal slope. Looking at the integration limits in eq. (3.45), and noticing that for

a probability distribution with the properties of the jet spectral function it is typically true

that m2
j|max . 〈m2

j〉 . 〈m2
j 〉ρ, where 〈m2

j 〉 =
∫ ∞
0 dm2

j m
2
j Jm(m2

j ), we obtain the following

condition:

1 − xB

xB
Q2 & 〈m2

j 〉ρ . (3.52)

Note that it coincides with the condition (3.46) that insures we can indeed approximate

J2 ≈ Jm for the computation of inclusive DIS cross section. It also guarantees some

rapidity separation between the current and target jets, which is needed to justify the

handbag diagram in the first place. The approximation of step 4 consisted in neglecting

the integration limits on dk− and d2kT . For the transverse momentum, we need at least

to make sure that the average 〈k2
T 〉 is well below the upper limit derived in eq. (3.31):

〈k2
T 〉 ≪

1 − ξ

4ξ
Q2

(
1 + ξ

m2
N

Q2

)
. (3.53)

The difficulty is that we cannot estimate 〈k2
T 〉 within collinear factorization. To do this, we

would need to resort to unintegrated PDF [34, 35], which are still integrated over dk−, or
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to the more recently proposed fully unintegrated PDF [16]. For a rough estimate, we may

use the uncertainty principle and set the minimum transverse momentum k2
Tmin = 1/r2N ≈

0.04 GeV2, where r2N is the nucleon radius. pQCD evolution will then broaden it roughly

according to

〈k2
T 〉 = k2

Tmin[1 + C log(Q2/k2
Tmin)] , (3.54)

with C a constant of order 1. The borders of the confidence region for the discussed TMC

and JMC are plotted in figure 9 using the above estimate for 〈k2
T 〉, and 〈m2

j 〉 = 0.3 GeV2.

4. Summary and conclusions

In the first part of this paper, we computed the target mass corrections to unpolarized DIS

structure functions in the context of collinear factorization. Because of the non-perturbative

nature of target mass, we emphasized that for any factorizable hadronic observable, the

TMC can only appear explicitly in kinematic variables and implicitly in definitions of

non-perturbative hadron matrix elements. The momentum space approach allowed us to

avoid the ambiguities related to the moments inversion which affect the OPE treatment

of Georgi and Politzer. In particular, we could respect 4-momentum and baryon number

conservation, and obtain TMC corrected structure functions without unphysical contribu-

tions at xB > 1. When performing global QCD fits of the PDFs in the context of pQCD

collinear factorization, the procedure presented in this paper might be the most consistent

way to treat TMC, because it expresses the long distance physics of structure functions,

and the leading target mass correction, in terms of PDFs that share the same partonic

operators with the PDFs of zero hadron mass. Hence it allows to unambiguously separate

the kinematic effects of the target’s mass from its dynamical contribution to parton matrix

elements and the PDFs.

Our formalism for TMC in eq. (2.18) is valid at leading twist and any order in αs. Cal-

culating TMC for the power-suppressed higher-twist contributions to the structure func-

tions is a non-trivial [13] but important issue for measuring the size of parton correlations

in the nucleon wave-function, which we leave to a future effort. The leading-twist formal-

ism can be easily extended to polarized DIS structure functions [37], for which a correct

evaluation of TMC is even more important than in the unpolarized case because the bulk

of available data is in fact in the large-xB domain. The extension to semi-inclusive DIS

and to hadronic collisions is also very important, in order to fully include TMC in global

PDF fits. An example is the Drell-Yan cross-section at large Feynman xF , which has the

potential to further constrain large-x PDFs [38]. It is also straightforward to extend the

TMC analysis to DIS on nuclear targets, in order to include the effects of nucleon binding

and Fermi motion [39]. This is especially important for studying the large-x neutron PDFs

and the d/u ratio, which are extracted from data taken with a Deuterium target.

In the second part of the paper, we examined the impact of a final-state jet function

on the extraction of PDFs at large xB . We proposed to write the leading order hadronic

tensor, hence the lowest order contribution to DIS cross section, in terms of the spectral

representation J2 of the jet function, which has the physical meaning of invariant jet mass
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distribution. We evaluated the impact of JMC on the leading order DIS structure functions,

and found it to be potentially large even at not so small values of photon virtuality such

as Q2 = 25 GeV2. In the NLO cross-section, the impact of JMC is likely to be reduced,

because a non-zero jet invariant mass can be produced in the hard scattering beyond tree

level, but is still potentially large. We also evaluated the range of validity in xB and Q2 of

the approximations we made.

For practical applications to global fits of PDFs, it is important to investigate the

shape and properties of the smeared jet spectral function Jm, which effectively includes

the neglected soft momentum exchanges in the final state. This can be phenomenologically

done using a Monte-Carlo simulation and then trying several parametrizations of Jm. In

a more fundamental approach, we noticed that the jet spectral function J2 is related to

the non-perturbative quark propagator, which can be computed in lattice QCD or using

Schwinger-Dyson equations. To avoid the difficulties connected to the analytic continuation

to Minkowski space, one may try and rotate the whole handbag diagram to Euclidean space,

or use a Hamiltonian-based formulation of lattice QCD.

In conclusion, the obtained results on TMC and JMC will be very important when

using large-xB and low-Q2 data on DIS structure function (like those obtained at Jefferson

Lab) to extract reliable PDFs at large-x, and to disentangle kinematic effects from the

dynamically interesting higher-twist parton correlations. The discussed extensions of our

formalism to other processes will allow a full inclusion of TMC and JMC in global QCD

fits of parton distribution functions.
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A. Kinematic constraints at finite Q2

Let us consider the handbag diagram for a DIS process on a nucleon target, as depicted in

the right hand side of figure 1. We repeat the kinematic analysis of the handbag diagram

performed in section 2, but for the general case of an off-shell bound parton of momentum

k, and k2 . m2
f . The limit of on-shell quarks of mass m2

f , relevant to collinear factorization,

can be obtained setting k2 = m2
f and xf = x̃f in the formulae below.

We consider the scattering of a generic vector boson (γ,W±, Z) on a parton of flavor

f of mass mf . The lowest order couplings are displayed in figure 10. The masses of the

quarks (other than f) coupled to the vector boson are m1 and m2. The current jet mass

must satisfy

m2
j ≥ sth (A.1)
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mf

m1

m2

m1

mf = 0

Figure 10: Lowest order couplings of a generic vector boson (γ,W±, Z) to a parton of flavor f

and mass mf . The masses of the produced quarks are m1 and m2. Left: boson-quark scattering

(m2 = 0). Right: boson-gluon fusion.

where

sth = (m1 +m2)
2 . (A.2)

As discussed in section 2, the net baryon number is likely to flow through the bottom

of the handbag diagram for the leading DIS contribution that is given by the collinear

factorization formalism. Therefore,

sth ≤ m2
j ≤ s−m2

N . (A.3)

Using m2
j = (q + k)2 = k2 + (1/xf − 1)Q2 we obtain

xB

1 − xBk2/Q2
≤ xf ≤ 1

1 + (sth − k2)/Q2
. (A.4)

Using m2
j = (Q2 + ξ

xk
2)(x

ξ − 1), eq. (A.4) can alternatively be expressed as limits over the

fractional momentum x = k+/p+:

xmin ≤ x ≤ xmax (A.5)

where

xmin = ξ
Q2 + sth − k2 + ∆[k2,−Q2, sth]

Q2

xmax = ξ
Q2 + s−m2

N − k2 + ∆[k2,−Q2, s −m2
N ]

Q2

∆[a, b, c] =
√
a2 + b2 + c2 − 2(ab+ bc+ ca) . (A.6)

We finally note that

xf =
ξ

x

1

1 − ξ2

x2
k2

Q2

. (A.7)
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B. Invariant and helicity structure functions

B.1 Helicity structure functions

We work in a collinear frame and for generality we keep the quark mass different from zero.

For collinear on-shell partons we have from eq. (2.3)

pµ = p+nµ +
m2

N

2p+
A

nµ

qµ = −ξp+nµ +
Q2

2ξp+
nµ

k̃µ = xp+nµ +
m2

f

2xp+
nµ ,

(B.1)

where mf is the mass of the parton of flavor f . For later use, we define the shorthands

ρ2
B = 1 + 4x2

B

m2
N

Q2
ρ2

f = 1 + 4x2
f

m2
f

Q2
, (B.2)

where, as in eq. (2.2),

xB =
−q2
2p · q xf =

−q2

2k̃ · q
. (B.3)

Following [26], we define the longitudinal, transverse and scalar polarization vectors

with respect to the virtual photon momentum q and a reference vector p,

εµ0 (p, q) =
−q2pµ + (p · q)qµ

√
−q2[(p · q)2 − q2p2]

=
−q2pµ + (p · q)qµ

√
−q2(p · q)ρ2(p, q)

εµ±(p, q) =
1√
2
(0,±1,−i, 0)

εµq (p, q) =
qµ

√
−q2

, (B.4)

where

ρ2(p, q) = 1 − p2q2/(p · q)2 . (B.5)

It is immediate to verify that ρ2(p, q) = ρ2
B and ρ2(k̃, q) = ρ2

f . The polarization vectors

satisfy the following conditions

ελ · ελ′ = 0 for λ 6= λ′

ελ · ελ = 1 for λ = 0,+,− (B.6)

εq · εq = −1

and, in particular, q · ε0 = q · ε± = 0. The helicity structure functions Fλ are defined as

projections of the hadronic tensor:

Fλ(xB , Q
2) = Pµν

λ (p, q)Wµν(p, q) (B.7)
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with λ = L, T,A, S, {0q}, [0q]. The longitudinal, transverse, axial, scalar, and mixed pro-

jectors Pµν
λ are

Pµν
L (p, q) = εµ0 (p, q)εν∗0 (p, q)

Pµν
T (p, q) = εµ+(p, q)εν∗+ (p, q) + εµ−(p, q)εν∗− (p, q)

Pµν
A (p, q) = εµ+(p, q)εν∗+ (p, q) − εµ−(p, q)εν∗− (p, q)

Pµν
q (p, q) = εµq (p, q)εν∗q (p, q)

Pµν
{0q}(p, q) = εµ0 (p, q)εν∗q (p, q) + εµq (p, q)εν∗0 (p, q)

Pµν
[0q](p, q) = εµ0 (p, q)εν∗q (p, q) − εµq (p, q)εν∗0 (p, q) .

(B.8)

Using

εµ+(p, q)εν∗+ (p, q) − εµ−(p, q)εν∗− (p, q) =
−iεµναβpαqβ

(p · q)ρB
(B.9)

εµ+(p, q)εν∗+ (p, q) + εµ−(p, q)εν∗− (p, q) = −gµν + εµ0 (p, q)εν∗0 (p, q) − εµq (p, q)εν∗q (p, q) , (B.10)

one easily sees that

FT (xB , Q
2) = −W µ

µ (p, q) + FL(xB , Q
2) − Fq(xB , Q

2)

FA(xB , Q
2) =

−iεµναβpαqβ
(p · q)ρB

Wµν(p, q) . (B.11)

Even if not apparent from eq. (B.4), a consequence of the normalization conditions is

that the reference vector has the only function to define the t − z and transverse planes

in conjunction with qµ: as long as it lays in the t − z plane, a different reference vector

defines the same polarization vectors [26]. For example, εµλ(p, q) = εµλ(k̃, q). As we will

see, choosing k̃ instead of p is convenient when defining the parton level helicity structure

functions, which read

hλ(xf , Q
2) = Pµν

λ (k̃, q)Hµν(k̃, q) (B.12)

and satisfy identities analogous to eq. (B.11), with p→k̃.

B.2 Invariant structure functions

For a generic lepton-hadron scattering, we define the hadronic Fi and partonic hi invariant

structure functions with i = 1, . . . , 6 by the following tensor decomposition of the hadronic

tensor:

W µν(p, q) =

(
− gµν +

qµqν

q2

)
F1(xB , Q

2) (B.13)

+

(
pµ − qµp · q

q2

)(
pν − qν p · q

q2

)
F2(xB , Q

2)

p · q

− iεµναβpαqβ
F3(xB , Q

2)

p · q − qµqν

q2
F4(xB , Q

2)

− pµqν + qµpν

2p · q F5(xB , Q
2) +

pµqν − qµpν

2p · q F6(xB , Q
2)
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and

Hµν(k̃, q) =

(
− gµν +

qµqν

q2

)
h1(x̃f , Q

2) (B.14)

+

(
k̃µ − qµ k̃ · q

q2

)(
k̃ν − qν k̃ · q

q2

)
h2(x̃f , Q

2)

k̃ · q

− iεµναβ k̃αqβ
h3(x̃f , Q

2)

k̃ · q
− qµqν

q2
h4(x̃f , Q

2)

− k̃µqν + qµk̃ν

2k̃ · q
h5(x̃f , Q

2) +
k̃µqν − qµk̃ν

2k̃ · q
h6(x̃f , Q

2) .

These 2 definitions differ from the notation of ref. [26] in the chosen denominators. Our

definitions have the advantage of displaying a duality between the hadron and parton level,

which can be obtained from each other by exchanging p ↔ k̃, and lead to a lesser degree

of mixing between the hadron and parton structure functions under collinear factorization,

see eq. (B.25). By applying the projectors (B.8) to eqs. (B.13)-(B.14), it is straightforward

to show that

FL = −F1 +
ρ2

B

2xB
F2 hL = −h1 +

ρ2
f

2x̃f
h2

FT = 2F1 hT = 2h1

FA = ρBF3 hA = ρfh3

FS = F4 − F5 hS = h4 − h5

F{0q}= −ρBF5 h{0q}= −ρfh5

F[0q] = −ρBF6 h[0q] = −ρfh6 , (B.15)

where we understood the dependence of Fiλ on (xB , Q
2) and of hiλ on (x̃f , Q

2) for ease of

notation. Note that FL differs by a factor of 2xB with respect to other common conventions.

In our notation, the ratio R of transverse and longitudinal electron-nucleon cross sections

reads

R =
σT

σL
=
FL

F1
. (B.16)

B.3 Collinear factorization for structure functions

As discussed in section 2 and appendix A, the collinear factorization theorem states that

W µν(p, q) =
∑

f

∫
dx

x
θ(x̃max

f − x̃f )θ(x̃f − x̃min
f )Hµν

f (k̃, q)ϕf/N (x,Q2) (B.17)

where

x̃f =
ξ

x

1

1 − ξ2

x2

m2
f

Q2

(B.18)

x̃min
f =

xB

1 − xBm2
f/Q

2
(B.19)

x̃max
f =

1

1 + (sth −m2
f )/Q2

. (B.20)
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The corresponding limits of integration on dx, namely xmin and xmax, can be read off

eq. (A.6) setting k2 = m2
f . As discussed in appendix B.1, Pµν

λ (p, q) = Pµν
λ (k̃, q), hence the

factorization theorem for helicity structure functions reads

Fλ(xB , Q
2,m2

N ) =
∑

f

∫ xmax

xmin

dx

x
hf

λ(x̃f , Q
2)ϕf/N (x,Q2) (B.21)

=
∑

f

∫
exmax

f

exmin
f

dx̃f

x̃f
hf

λ(x̃f , Q
2)ϕf/N

(
ξ

ξf
, Q2

)
, (B.22)

where

ξf =
2x̃f

1 +
√

1 + 4x̃2
fm

2
f/Q

2
. (B.23)

The last line of eq. (B.22) is particularly interesting, because the Nachtmann variable ξ

only appears in the argument of ϕ, without touching the integration limits. In shorthand

notation, where we highlight the dependence on xB and ξ and suppress that on m2
N and

Q2, and understand the sum over f , the helicity structure functions read

Fλ(xB) ≡ hf
λ ⊗ ϕf/N (ξ) . (B.24)

For the invariant structure functions, kinematic prefactors often appear:

F1(xB) = hf
1 ⊗ ϕf/N (ξ)

F2(xB) =
xB

x̃f

ρ2
f

ρ2
B

hf
2 ⊗ ϕf/N (ξ)

F3,5,6(xB) =
ρf

ρB
hf

3,5,6 ⊗ ϕf/N (ξ)

F4(xB) = hf
4 ⊗ ϕf/N (ξ) +

(
ρf

ρB
− 1

)
hf

5 ⊗ ϕf/N (ξ) .

(B.25)

The “massless structure functions” can be obtained by setting m2
N = 0, hence, ξ = xB

in eqs. (B.24)-(B.25):

F
(0)
λ,i (xB) = Fλ,i(xB)|m2

N
=0 . (B.26)

In this definition we left the quark mass mf arbitrary.

The “näıve” target mass corrected structure functions F nv are obtained by using x ≤ 1

as an upper limit of integration over dx in eq. (B.22). This limit is a general and process-

independent consequence of the definition of a parton distribution in the field theoretic

parton model [27], but in DIS it is weaker than x ≤ xmax, which is induced by 4-momentum

and baryon number conservation as discussed in section 2. In detail, the näıve helicity

structure functions read

F nv
λ (xB) =

∑

f

∫ 1

xmin

dx

x
hλ(x̃f , Q

2)ϕf/N (x,Q2) (B.27)
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Using the definition of massless structure functions, one finds

F nv
1,λ(xB) = F

(0)
1,λ (ξ)

F nv
2 (xB) =

1

ρ2
B

xB

ξ
F

(0)
2 (ξ)

F nv
3,4,5(xB) =

1

ρB
F

(0)
3,4,5(ξ)

F nv
4 (xB) = F

(0)
4 (ξ) +

1 − ρB

ρB
F

(0)
5 (ξ) .

(B.28)

These formulae have already appeared in [26, 25, 24], modulo the change of notation

discussed in appendix B.2. As already noted in the main text, they are non-zero in the

unphysical region xB > 1.

B.4 Structure functions with Jet Mass Corrections

At LO, the helicity structure functions with jet mass corrections read

Fλ(xB , Q
2,m2

N ) =

∫ 1−xB
xB

Q2

0
dm2

jJ2(m
2
j )F

(0)
λ

(
ξ(1 +m2

j/Q
2), Q2

)
. (B.29)

The JMC to invariant structure functions can be obtained from eqs. (B.29) and (B.15).

Suppressing the Q2 and m2
N dependence of the structure functions for ease of notation, we

obtain:

F JMC
1 (xB) =

∫ 1−xB
xB

Q2

0
dm2

jJ2(m
2
j )F

(0)
1

(
ξ(1 +m2

j/Q
2)

)

F JMC
2 (xB) =

∫ 1−xB
xB

Q2

0
dm2

jJ2(m
2
j )

1

ρ2
B

xB

ξ(1 +m2
j/Q

2)
F

(0)
2

(
ξ(1 +m2

j/Q
2))

F JMC
3,5,6 (xB) =

1

ρB

∫ 1−xB
xB

Q2

0
dm2

jJ2(m
2
j )F

(0)
3,5,6

(
ξ(1 +m2

j/Q
2)

)

F JMC
4 (xB) =

∫ 1−xB
xB

Q2

0
dm2

jJ2(m
2
j )

{
F

(0)
4

(
ξ(1 +m2

j/Q
2)

)
+

1 − ρB

ρB
F

(0)
5

(
ξ(1 +m2

j/Q
2)

)}
.

(B.30)

C. Target mass corrections in the OPE formalism

We collect here for completeness the target mass corrections to the electromagnetic struc-

ture functions obtained in the operator product expansion formalism of De Rujula, Georgi

and Politzer [17, 18], see also [15] for a thorough review and discussion:

FGP
1 (xB , Q

2) =
xB

ρB

[
F

(0)
1 (ξ,Q2)

ξ
+
m2

NxB

Q2ρB
∆2(xB , Q

2)

]

FGP
2 (xB , Q

2) =
x2

B

ρ3
B

[
F

(0)
2 (ξ,Q2)

ξ2
+ 6

m2
NxB

Q2ρB
∆2(xB , Q

2)

]

FGP
L (xB , Q

2) =
xB

ρB

[
F

(0)
L (ξ,Q2)

ξ
+ 2

m2
NxB

Q2ρB
∆2(xB , Q

2)

]
(C.1)
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where

∆2(xB , Q
2) =

∫ 1

ξ
dv

[
1 + 2

m2
NxB

Q2ρB
(v − ξ)

]
F

(0)
2 (v,Q2)

v2
, (C.2)

and F
(0)
i are the perturbative structure functions computed in the massless target approx-

imation m2
N/Q

2→0. Formulae for the FGP
3−6 structure functions can be found in ref. [40].

Note that in the notation of appendix B, differently from ref. [15], the longitudinal

structure function is defined such that

FL(xB) =
ρ2

2xB
F2(xB) − F1(xB) , (C.3)

and

R(xB) ≡ σL(xB)

σT (xB)
=
FL(xB)

F1(xB)
. (C.4)

This notation is explained in detail in the appendices of ref. [26]. Combining eqs. (C.3)

and (C.4) we obtain

F1(xB) =
ρ2

B

2xB

F2(xB)

1 +R(xB)
(C.5)

in agreement with ref. [15].

Equations (C.1) have been used to compute the OPE target mass corrections in fig-

ures 3 and 4. Note that both FGP
L and FGP

1 receive a correction from an integral of

F
(0)
2 ≫ F

(0)
1,L. This explains the large size of the target mass corrections for the OPE curves

of figure 4.
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